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Abstract

Peptide fractions from marine animal hydrolysates can have biological activity. Red lionfish 
(Pterois volitans L.) is an invasive fish species in the tropical Atlantic, and harvest is a 
proposed control mechanism. With the aim of identifying possible bioactivity in peptides from 
red lionfish, an evaluation was done for the antioxidant, Cu2+ and Fe2+chelating, and angioten-
sin-converting enzyme inhibitory (ACE-I) activities of ultra-filtered peptide fractions derived 
from lionfish muscle enzymatically hydrolysed with the commercial enzyme Alcalase®. 
Hydrolysates were generated at 0, 30, 60, and 90 min, and the degree of hydrolysis (DH) were 
determined. The 30-min hydrolysate yielded the highest DH (30.78 ± 1.57%). This hydro-
lysate was ultra-filtered using four cut-offs (10, 5, 3, and 1 kDa), and the resulting polypep-
tides were analysed to generate their amino acids profile and estimated molecular weight 
(EMW). The F 5-3, F 3-1, and F < 1 kDa peptide fractions yielded the highest copper-chelat-
ing activity with values of approximately 88%. Fractions F > 10 and F 10-5 kDa yielded the 
highest iron-chelating activity with values of approximately 18.8%. The β-carotene bleaching 
test showed that the F 10-5, F 5-3, F 3-1, and F < 1 kDa fractions to have high antioxidant 
capacity, inhibiting more than 80% of β-carotene discoloration versus the control. The F 5-3 
kDa fraction exhibited the highest ACE inhibition (34.57%), possibly due to the presence of 
amino acids such as Gly, Leu, Phe, Tyr, and Pro. Polypeptides with an EMW of 6.51 to 3.49 
kDa were identified in F > 10, and 2.17 kDa in F 5-3. Peptide fractions from hydrolysed red 
lionfish muscle exhibit in vitro activities, and could serve as potential source of functional 
ingredients.
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Introduction

 Red lionfish (Pterois volitans L.) is a tropical 
marine fish native to the Indo-Pacific which was intro-
duced to the south-eastern coast of the United States 
in the early 1980s. Thirty years later, it has invaded 
much of the tropical Atlantic Ocean, Caribbean Sea, 
and Gulf of Mexico. It is highly voracious, grows rapid-
ly, and lacks natural enemies in these areas, thus making 
it as an ecosystem risk; it is considered one of the 15 
major worldwide threats to biodiversity. As part of a 
control strategy, government agencies and conserva-
tion organizations suggest consuming lionfish, espe-
cially in high density regions. In Mexico, the National 
Commission of Protected Natural Areas (Consejo 
Nacional de Areas Naturales Protegidas - CONANP) 
has promoted its consumption through tastings at 
fishing tournaments in the states of Quintana Roo and 
Yucatan. The International Coral Reef Initiative (ICRI) 

has called for commercial fishing of the species, and 
proposed consumption, marketing, and import of 
lionfish meat (ICRI, 2010).
 Fish are a rich source of protein-derived bioac-
tive compounds. Antimicrobial peptides and antioxi-
dants have been isolated from tuna protein. Peptides 
with antihypertensive and calcium-binding activity 
have been isolated from Alaska pollock, tuna muscle, 
and dab proteins; while anticoagulant activity has been 
documented in peptides extracted from starfish and 
mussel, among others. One of the benefits of peptides 
from marine sources is their ability to bind free radicals 
and their reactive oxygen species content, both of which 
prevent oxidative damage by interrupting the lipid 
peroxidation chain reaction (Kwon and Wijesekara, 
2010). 
 Compared to metal salts, which have some 
limitations, chelating peptides are an excellent alternative 
for increasing mineral absorption and bioavailability. 
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Chelating peptides have been isolated by enzymatic 
hydrolysis of vegetable and animal proteins (Jiang et 
al., 2014). Iron has vital biochemical activities and is 
an essential element that participates in many 
biochemical processes in the human body. Iron 
deficiency in humans has been a nutritional problem 
for millennia. This metal can be supplied to the organ-
ism via salts, metal-chelating agents, and iron-chelat-
ing peptides (Guo et al., 2013). Copper is a fundamen-
tal trace element, which plays vital role as a cofactor 
of many enzymes, but it also has oxidative activity. 
Copper-chelating peptides can prevent this oxidative 
activity by chelating this metal ion. Angiotensin-con-
verting enzyme (ACE) is involved in cardiopathies 
which are often treated with pharmaceutical ACE 
inhibitors. These can have serious side effects. 
Peptides which can inhibit ACE are generally small; 
thus, easily, and quickly absorbed in the gut 
(García-Moreno et al., 2015). They effectively reduce 
blood pressure and have no known adverse effects 
(Fitzgerald and Meisel, 2000).
 Peptides from marine sources are promising 
potential functional food ingredients or nutraceuticals. 
The present work thus aimed to evaluate the antioxi-
dant, copper- and iron-chelating activities, and ACE 
inhibitory capacity of ultra-filtered peptide fractions 
isolated from hydrolysed red lionfish muscle. Their 
presence would identify this species as a source of 
functional ingredients, thus broadening the possible 
uses of its meat and serving as an impetus for its harvest.

Materials and methods

Animal collection
 Red lionfish specimens were collected by 
divers near Cozumel Island, in the state of Quintana 
Roo, on the Caribbean coast of Mexico. The fish were 
gutted and filleted, and the skinless fillets were 
freeze-dried until use. The dried samples were pulver-
ised, mixed until homogeneous, and stored at -20°C 
in a polyethylene bottle for later analysis. Fillet mois-
ture and protein content were analysed using AOAC 
methods: moisture (method 934.01) and protein (meth-
od 954.01) (calculated as nitrogen × 6.25). 

Protein hydrolysate preparation
 Hydrolysates were isolated from a subsample 
of freeze-dried fillet in two replicates following the 
first step of the hydrolysis method described by Megías 
et al. (2007); using a hydrolysis reactor vessel equipped 
with a stirrer, thermometer, and pH electrode. Lyoph-
ilised fish fillet (5% protein w/v) was digested with 
Alcalase® (0.3 AU/g protein) for 90 min at 50°C and 
at pH 8. Aliquots were taken at five different times 

(0, 15, 30, 60, and 90 min) and hydrolysis stopped by 
heat inactivation of Alcalase® at 80°C for 20 min. The 
resulting hydrolysates were clarified by centrifugation 
at 11,227 g for 30 min in a Beckman Coulter Ultracen-
trifuge (LE-80K, Palo Alto, California), and then 
frozen at -20°C until use. Hydrolysate protein content 
was quantified following the method of Lowry et al. 
(1951), and the results was used in all subsequent 
analyses.

Degree of hydrolysis
 Degree of hydrolysis (DH) was calculated 
following Nielsen et al. (2001). The free amino groups 
were quantified with o-phthalaldehyde in the presence 
of dithiothreitol, which forms a coloured compound 
detectable at 340 nm in a spectrophotometer (Thermo 
Spectronic, Genesys 10UV). The cleaved peptide 
bonds were quantified using a calibration curve with 
L-serine as a standard, using Eq. 1: 

where, h tot = total number of peptide bonds per protein 
equivalent, and h = number of hydrolysed bonds. All 
experiments were performed in triplicate.

Ultrafiltration of protein hydrolysate
 Ultrafiltration was done following Cho et al. 
(2004) using ultrafiltration membranes (Millipore 
PLGC06210, Bedford, MA, US). Four membranes 
with different molecular weight cut-offs (10, 5, 3, and 
1 kDa) were used in an ultrafiltration device (Model 
2000, Millipore, Inc., Marlborough, MA, USA). Nitro-
gen (40 psi) was used as an inert gas. Ultrafiltration 
of the protein hydrolysate produced at 30 min resulted 
in five fractions: F > 10, F 10-5, F 5-3, F 3-1, and F < 
1 kDa.

Quantifying peptide fraction antioxidant and chelat-
ing activity 
β-carotene bleaching method
 Antioxidant activity was measured with β-car-
otene bleaching method, with modifications as 
described by Del Ré and Jorge (2011). A mixture of 
4 mg β-carotene (Sigma 22040) in 1 mL chloroform 
and 1 mL Tween 20 (P1379) was vigorously stirred 
by vortex. After removal of chloroform under a nitro-
gen stream, a clear solution was obtained by mixing 
in 50 mL 100 mM oxygen-sparged phosphate buffer 
at pH 7.4. Each peptide fraction (equivalent to 500 µg 
protein) was dissolved in 60 µL phosphate buffer and 
200 µL β-carotene / Tween 20 solution, added to wells 
in a 96-well plate, and incubated at 50°C in the dark.  

DH = 100x
 h
h
tot








                                                                             (Eq. 1)1 

1
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The oxidant agent was 10 µL 50 µM FeCl2 (Sigma 
44939). The negative control was β-carotene / Tween 
20 solution + 10 µL 50 µM FeCl2 mixed with 60 µL 
phosphate buffer containing no peptide fraction. The 
positive control was β-carotene / Tween 20 solution 
+ 10 µL 50 µM FeCl2 mixed with 10 µg butylated 
hydroxyanisole (BHA) (Sigma B1253). Peroxidative 
degradation of β-carotene was monitored by recording 
absorbance at 470 nm up to 120 min with a microplate 
reader. The percentage of inhibition of β-carotene 
discoloration was calculated using Eq. 2:

where, Abs C = absorbance in the negative control, 
and Abs M = absorbance in the sample; both readings 
were taken at the determined measurement times.

Copper-chelating activity
 Copper (Cu2+)-chelating activity was meas-
ured using pyrocatechol violet reagent according to 
Saiga et al. (2003). Peptide fractions (equivalent to 
500 µg protein) were added to Eppendorf tubes 
containing 1 mL 50 mM sodium acetate buffer (pH 
6.0), 25 µL 4 mM pyrocatechol violet (Sigma P7884), 
and 10 μg Cu (CuSO4). Ethylenediaminetetraacetic 
acid (EDTA) (50 µg) was used as a positive control. 
Absorbance at 632 nm was measured following 1 min 
incubation at room temperature. Runs were done in 
triplicate. A calibration curve was constructed using 
different copper concentrations (2, 4, 6, 8, and 10 μ
g/μL). Copper concentration was determined using a 
linear regression equation, and Cu2+-chelating activity 
was calculated using Eq. 3:

where, [Cu]i = initial Cu2+ concentration, and [Cu]f = 
final Cu2+ concentration.

Iron-chelating activity
 Iron (Fe2+)-chelating activity was measured 
based on formation of the Fe2+-ferrozine complex, 
according to Carter (1971). Peptide fractions (equiva-
lent to 500 µg protein) were added to Eppendorf tubes 
containing 1 mL 100 mM sodium acetate buffer (pH 
4.9) and 100 μL FeCl2•4H2O solution (0.01 mg Fe / 
mL water). Again, 50 µg EDTA was used as a positive 
control. Absorbance at 562 nm was measured after 
adding the ferrozine solution (50 µL, 40 mM in water) 
(Sigma P5338) and incubated for 30 min at room 
temperature. Runs were done in triplicate. A calibration 

curve was built using different iron concentrations 
(0.2, 0.4, 1, 1.5, and 2 µg/µL). Iron concentration was 
determined using a linear regression equation, and 
iron-chelating activity was calculated using Eq. 4:

where, [Fe]i = initial Fe2+ concentration, and [Fe]f = 
final Fe2+ concentration.

Angiotensin-converting enzyme inhibition (ACE-I)
 Inhibitory activity was quantified by peptide 
fraction, following a modified version of Cian et al. 
(2011). These modifications consisted of purifying the 
enzyme from the lung of a recently killed rabbit as 
follows: 1 g of lung was extracted with buffer contain-
ing 0.25 M sucrose and 0.1 M sodium anhydrous phos-
phate (pH 8.3; 1:5 p/v), to which 5 μL PMSF (phenyl-
methylsulphonyl fluoride) were added and the mixture 
centrifuged at 15,500 g for 10 min at 4°C. Later, this 
mixture was added with 20 μL sample, 20 μL ACE, 
20 μL hippuryl-L-histidyl-L-leucine, 15 μL 5 M NaCl 
(0.3%), and 175 μL 0.1 M NaH2PO4 (pH 8.3). This 
was incubated at 37°C for 45 min, and the reactions 
inactivated using 665 μL 2.4.6-trichloride-triazine in 
3% dioxane and 1.1 mL NaH2PO4 added. This mixture 
was centrifuged at 15,500 g for 10 min at 4°C and 
absorbance measured at 382 nm. The percentage of 
ACE inhibition was expressed as the ratio between the 
reactions with the sample and that of the control, and 
calculated using Eq 5:

where, AS = optical density of ACE with sample and 
substrate (enzyme-substrate-sample), ABS = optical 
density of ACE and sample (enzyme-sample), AE = 
optical density of ACE with substrate (enzyme-sub-
strate), and ABE = optical density of substrate without 
ACE or sample (substrate).

Amino acid analysis of peptide fractions
 Amino acid analysis was carried out by acid 
hydrolysis and HPLC, following derivatisation with 
diethyl ethoxymethylenemalonate (Aldrich D94208), 
according to Alaiz et al. (1992), using D,L-α-aminobu-
tyric acid (Aldrich D94208) as internal standard. 

Sodium dodecyl sulphate-polyacrylamide gel electro-
phoresis (SDS-PAGE)
 This analysis was done following the method of 
Schägger and Jagow (1987), using 18% acrylamide gel 

 

β-carotene inhibition (%)  =(Abs  C - Abs  M
Abs  C )× 100                                     (Eq. 2)  1 

Chelating activity (%) =([Cu ]i-[Cu] f
[Cu] i

)× 100     

(Eq. 3)

Chelating activity (%)  =([Fe] i-[Fe]f
[Fe] i )× 100                                               (Eq. 4)1 

ACE inhibition(%) =  100− [(AS−ABS
AE−ABE)× 100]                                       (Eq. 5)1 
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and 4% stacking gel. Peptide fractions (5 - 6 μg/μL 
protein) were separately dissolved in a buffer (50 mM 
Tris-HCl [pH 6.8]; 10% glycerol [v/v], 1% SDS [w/v], 
and 0.01% bromophenol blue [w/v]), and heated to 
100°C for 5 min. Runs were done at 40 mA for 1.5 h 
in a Miniprotein electrophoresis chamber (BIORAD, 
Hercules, California). The resulting gels were stained 
with 0.05% Coomassie Brilliant Blue G-250, and 
cleaned with an acetic acid:methanol:distilled water 
(1:4:5) solution. Wells were loaded with 10 µg protein 
or one of the hydrolysates. The low-range molecular 
weight standard (BIORAD, USA, Cat. #1610305) 
contained phosphorylase B (105.2 kDa), bovine serum 
albumin (84.2 kDa), ovalbumin (50.4 kDa), carbonic 
anhydrase (36.8 kDa), soybean trypsin inhibitor (29.0 
kDa), and lysozyme (20.5 kDa). A polypeptide stand-
ard (BIORAD, USA, Cat. #1610326) was used which 
contained triosephosphate isomerase (26.625 kDa), 
myoglobin (16.950 kDa), α-lactalbumin (14.437 kDa), 
aprotinin (6.512 kDa), insulin b chain, oxidised (3.496 
kDa), and bacitracin (1.423 kDa).

Statistical analysis
 A one-way analysis of variance (ANOVA) 
with a 5% significance level was applied to the 
results using the Statgraphics Centurion XV 
program. The Duncan method was used to compare 
the means between hydrolysate DH values and 
peptide fraction in vitro activities.

Results and discussion

Moisture and protein
 The lionfish muscle had 81.64 ± 0.12% (db) 
protein content and 11.46 ± 0.1% moisture content. 
These values are similar to the 88.6 ± 0.3% protein 
and 3.6 ± 1.9% moisture contents reported for north-
ern Pacific hake (Merluccius productus) (Pacheco et 
al., 2008).

Degree of hydrolysis (DH)
 The lyophilised sample had 8.35 ± 0.96% 
DH. This level may be due to the presence of endoge-
nous enzymes such as trypsin, pepsin, chymotrypsin, 
and visceral and digestive tract enzymes, which can 
contribute to protein breakdown by autolysis (Sama-
ranayaka and Chan, 2011).
 The highest DH values were in the 30-min 
hydrolysate (30.78 ± 1.57%) and 90-min hydrolysate 
(30.08 ± 0.25%); these did not differ significantly (p 
> 0.05), so the shortest hydrolysation time (30 min) 
was chosen for UF fractionation. The decrease in DH 
observed at 60 min (from 30.78 ± 1.57% at 30 min to 
27.14 ± 1.20% at 60 min) may have occurred due to 

competition between non-hydrolysed protein and 
peptides that constantly formed during the hydrolysis 
process (Brownsell et al., 2001). The high DH values 
are similar to the 34.73% reported for hydrolysates 
from the viscera and carcass of tilapia (Oreochromis 
niloticus) following 2 h hydrolysis with 0.5% Alca-
lase® (v/v) at 45°C (Silva et al., 2014). Alcalase® is a 
broad specificity alkaline serine endoprotease, so it 
can easily produce peptides of different sizes. It is 
one of the most suitable microbial enzymes for 
producing fish protein hydrolysates for subsequent 
peptide fractionation (Saidi et al., 2014a).

Antioxidant and chelating activity of lionfish peptide 
fractions 
Inhibition of oxidative discoloration of β-carotene.
 As the reaction time increased (30, 60, 90, 
and 120 min), absorbance decreased in the peptide 
fractions (F > 10, F 10-5, F 5-3, F 3-1, F < 1) and the 
BHA antioxidant, in the presence of Fe+2 as an 
oxidising metal (Figure 1). At 30 min, no significant 
difference (p > 0.05) was observed between the 
absorbance values of the F 5-3 and F < 1 fractions 
and the BHA. Again, no significant difference (p > 
0.05) was observed between the absorbance values of 
the F 10-5, F 5-3, F 3-1, and F < 1 fractions, as well 
as BHA at 90 and 120 min reaction with the metallic 
ion and β-carotene. At 90 min, β-carotene discolora-
tion was inhibited by 80.44% (F > 10), 73.88% (F 
10-5), 79.78% (F 5-3), 78.22% (F 3-1), and 76.11% 
(F < 1). At 120 min, discoloration was inhibited by 
81.79% (F > 10), 76.07% (F 10-5), 81.07% (F 5-3), 
80.00% (F 3-1), and 79.38% (F < 1). The negative 
control (β-carotene with no sample) exhibited an 
exponential increase in absorbance values.

 

 

Figure 1. Oxidation of β-carotene in the presence of peptide 
fractions (equivalent to 500 µg protein) derived from red lionfish 
muscle subjected to enzymatic hydrolysis with Alcalase® for 30 
min. Error bars indicate standard deviation. Different letters above 
bars in the same time period indicate statistically significant differ-
ence (p < 0.05). Positive control = 10 µg BHA.
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Cu2+ chelation
 Peptide fraction Cu2+ chelation values ranged 
from 86.05 ± 0.31 to 88.67 ± 0.43% (Figure 2a). 
Chelating capacity did not differ between the F 10-5 
(87.64 ± 0.66%), F 5-3 (88.30 ± 0.53%) and F < 1 
(88.67 ± 0.43%) fractions. These high Cu2+ chelation 
values may be attributed to the rupture of peptide 
bonds and increased concentrations of carboxylic 
(COO-) leading to greater Cu2+ binding, thus remov-
ing this prooxidative free metal ion (Kong and 
Xiong, 2006). The His amino acid is known to 
chelate copper (Kong and Xiong, 2006) and their 
amino acid profiles showed all the peptide fractions 
to contain His: 1.11 ± 0.08 (F > 10), 1.39 ± 0.02 (F 
10-5), 1.23 ± 0.15 (F 5-3), 1.82 ± 0.02 (F 3-1), and 
1.64 ± 0.12 g/100 g protein (F < 1).
 Hydrophobic peptides are generally antioxi-
dants and can also chelate metals (Ghribi et al., 
2015). This may partially explain the high copper 
chelation capacity of the fractions since their amino 
acid profiles (Table 1) showed them to have hydro-
phobic amino acids concentrations of 45.46 (F > 10), 
36.73 (F 10-5), 47.43 (F 5-3), 37.45 (F 3-1), and 
43.75 g/100 g protein (F < 1). High copper chelation 
levels are also associated with the presence of amino 
acids such as Glu and Asp, and α-amino acids such as 
Lys and Arg (Ghanbari et al., 2015).
 Hydrophobic amino acids (HHA) are known 
to possess antioxidant properties (Wijesekara et al., 
2011). The HHA content of F < 1 was higher than 
reported in tuna by-products, with higher levels of 
Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, and Met (Saidi 
et al., 2014b). However, aromatic amino acids 
(AAA), positively-charged amino acids (PCAA), and 
negatively-charged amino acids (NCAA) levels were 
also higher in F < 1 than in tuna by-products. These 
types of amino acids are characterised by their 
antioxidant and chelating properties which originate 
from their ability to donate or receive electrons to 
stabilise free radicals (Aluko, 2012) (Table 1).

Fe2+ chelation.
 Peptide fraction iron chelation values ranged 
from 13.92 ± 0.14 to 18.84 ± 0.01%, substantially 
lower than the 98.4% standard (6 µg EDTA). The 
highest value was observed in the F > 10 (18.84 ± 
0.01%) and F 10-5 (18.76 ± 0.14%) fractions; of note 
is that the chelation level decreased slightly with 
molecular weight (Figure 2b). This broadly coincides 
with the reductions in iron-chelating capacity 
observed in fractionated salmon muscle hydrolysates 
(Girgih et al., 2013). In a study of peptides fractions 
from tuna by-products hydrolysed with Alcalase® at a 
1% enzyme:substrate ratio (E/S), and 55°C for 60 min 

at pH 8.5 (Saidi et al., 2014a), iron-chelation percent-
ages were higher than those obtained in the present 
work: 35% in the < 4 kDa fraction, 40% in the 1-4 
kDa fraction, and 20% in the > 1 kDa fraction.
 Metal-chelating behaviour can be associated 
with amino acids structure, molecular weight, and 
composition; Gly and His have the highest reported 
iron-chelating activity (Lin et al., 2014). The amino 
acid profiles of the P. volitans peptide fractions 
showed them to have relatively high Gly content: 
4.47 ± 0.17 (F > 10), 5.60 ± 0.03 (F 10-5), (4.24 ± 
0.19) F 5-3, (5.19 ± 0.16) F 3-1, and 4.48 ± 0.16 g/100 
g protein (F < 1). These are higher than the Gly 
content in fractions from tuna by-product hydro-
lysates: 3.30 ± 0.12 (< 4), 4.8 ± 0.1 (1-4), and 3.0 ± 
0.1 g/100 g (> 1 kDa) (Saidi et al., 2014b). In contrast, 
His content was somewhat lower: 1.11 ± 0.08 (F > 
10), 1.39 ± 0.02 (F 10-5), 1.23 ± 0.15 (F 5-3), 1.82 ± 
0.02 (F 3-1), and 1.64 ± 0.12 g/100 g (F < 1). These 
levels are comparable to that of the F < 1 fraction of 
the tuna by-products hydrolysate (Table 1).

Angiotensin-converting enzyme inhibition (ACE-I)
 Inhibition of ACE by the red lionfish protein 

Figure 2. (a) Copper chelation in peptide fractions (equivalent to 
500 µg protein); and (b) Iron chelation of peptide fractions (equiva-
lent to 500 µg protein), derived from red lionfish muscle subjected 
to enzymatic hydrolysis with Alcalase® for 30 min. Error bars 
indicate standard deviation. Different letters above the bars indicate 
statistically significant difference (p < 0.05). Positive control : 50 
g EDTA.
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hydrolysate peptide fractions ranged from 15.03 ± 
1.71 to 34.57 ± 0.97% (Figure 3). The highest inhibi-
tion activity (34.57 ± 0.97%) was observed in the F 
5-3 kDa fraction, which may be due to the presence 
of amino acids such as Gly, Leu, Phe, Tyr, and Pro 
(Lee et al., 2014). In the amino acid profiles, all the 
peptide fractions had similar concentrations of Leu, 
Phe, Gly, and Tyr (Table 1). However, only the F 5-3, 
F < 1 and F > 10 fractions contained Pro, which may 
explain their higher ACE inhibition as compared to 

the other fractions. All the peptide fractions also 
contained high percentages of Arg, a precursor of 
nitric oxide, which is a potent vasodilator (Palmer et 
al., 1988). The amino acids sequences of different 
peptides exhibiting ACE inhibition have been isolat-
ed and identified, and they all contain aromatic and 
branched amino acids in the C-terminal group 
(His-Leu, Phe-Arg, and Ala-Pro). Based on this 
arrangement, antihypertensive peptides are reported 
to owe their activity to the presence of Pro 

Table 1. Amino acid content (g/100 g protein) of peptide fractions of red lionfish muscle subjected to enzymatic hydrolysis 
with Alcalase® for 30 min.

1Saidi et al. (2014a); c = Phe + Tyr; d = Met + Cys. ASX: aspartic acid and asparagine; GLX: glutamic acid and glutamine; 
EAA: essential amino acids; HAA: hydrophobic amino acids (Ala, Val, Ile, Leu, Tyr, Phe, Trp, Pro, Met, and Cys); AAA: 
aromatic amino acids (Phe, Trp, and Tyr); PCAA: positively-charged amino acids (Arg, His, and Lys); NCAA: negative-
ly-charged amino acids (ASX, GLX, Thr, and Ser); nd: not detected. 

AA 
Peptide fraction 

WHO 
TPH1 

F > 10 F 10-5 F 5-3 F 3-1 F < 1 F < 1 

Essential 

Ile 2.96 ± 0.01 3.28 ± 0.06 2.77 ± 0.11 3.27 ± 0.11 2.64 ± 0.04 3.0 2.4 

Leu 6.88 ± 0.12 7.96 ± 0.15 7.04 ± 0.22 9.71 ± 0.34 8.68 ± 0.11 5.9 4.9 

Lys 8.51 ± 0.24 9.76 ± 0.06 7.74 ± 0.18 8.24 ± 0.17 6.43 ± 0.09 4.5 4.5 

Met 1.93 ± 0.13 nd nd 3.08 ± 0.15 3.12 ± 0.34 1.6 1.7 

Phe 3.01 ± 0.23 3.44 ± 0.03 3.11 ± 0.20 4.32 ± 0.19 4.19 ± 0.09 3.0c 2.2 

Thr 3.56 ± 0.05 4.27 ± 0.02 3.57 ± 0.02 4.89 ± 0.12 4.58 ± 0.15 2.3 2.3 

Val 9.15 ± 0.09 15.79 ± 0.10 14.86 ± 0.20 9.99 ± 1.36 13.27 ± 0.02 3.9 4.9 

His 1.11 ± 0.08 1.39 ± 0.02 1.23 ± 0.15 1.82 ± 0.02 1.64 ± 0.12 1.5 3.4 

Trp nd nd nd 0.54 ± 0.05 0.51 ± 0.06 0.6 0.3 

Non-essential 

Ala 2.74 ± 0.34 3.31 ± 0.12 2.43 ± 0.04 2.78 ± 0.05 2.21 ± 0.19  1.5 

Arg 10.35 ± 0.12 12.97 ± 0.10 11.13 ± 0.12 15.57 ± 0.22 15.23 ± 0.40  2.4 

ASX 10.68 ± 0.46 10.11 ± 0.23 8.44 ± 0.80 7.93 ± 0.33 8.80 ± 0.42  2.7 

Cys nd nd 0.13 ± 0.18 nd nd 2.2d 1.9 

GLX 13.03 ± 0.34 15.71 ± 0.36 13.24 ± 0.54 14.69 ± 0.05 11.00 ± 0.41  4.9 

Gly 4.47 ± 0.17 5.60 ± 0.03 4.24 ± 0.19 5.19 ± 0.16 4.48 ± 0.16  3.0 

Ser 2.83 ± 0.23 3.47 ± 0.04 2.97 ± 0.07 4.22 ± 0.17 4.09 ± 0.12  1.9 

Tyr 2.59 ± 0.07 2.96 ± 0.01 2.57 ± 0.05 3.76 ± 0.11 3.42 ± 0.05  1.7 

Pro 16.19 ± 0.33 nd 14.52 ± 0.37 nd 5.71 ± 0.57  3.0 

Group 

EAA 37.12 45.88 40.33 45.87 45.06  26.5 

HAA 45.46 36.73 47.43 37.45 43.75  24.6 

AAA 5.60 6.39 5.68 8.62 8.12  4.2 

PCAA 19.97 24.12 20.10 25.63 23.30  10.2 

NCAA 30.10 33.55 28.22 31.74 28.47  7.6 

  



(Balti et al., 2015). Apparently, ACE inhibition in 
peptides is not associated with low molecular mass 
but rather with their amino acid composition (Abdel-
hedi et al., 2016). For instance, in antihypertensive 
peptide sequences, this property is associated with 
amino acids such as Ala, Arg, Phe, Pro, Lys, His, and 
Leu (FitzGerald and Miesel, 2000). This may explain 
the inhibition values found in red lionfish peptide 
fractions F 5-3 and F < 1.

Inhibition was noticeably lower in the F > 10, F 10-5 
and F 3-1 fractions than in F 5-3 and F < 1. This is 
generally analogous to the pattern observed in a 
study of hydrolysates from the herbivorous carp 
(Ctenopharyngodon idella) produced with Alcalase® 
at 50°C and at pH 9.0 in which the > 3 kDa peptide 
fraction exhibited higher ACE inhibition activity 
than the > 10 kDa fraction (Chen et al., 2012).

Protein quality
 The peptide fraction amino acid profiles also 
highlight the high-quality protein of red lionfish. 
Many of the EAA in the fractions occurred at levels 
above requirements for adults as established by the 
WHO (2007). For instance, they contained Ile (F > 
10, F 10-5, and F 3-1), Leu (F > 10, F 10-5, F 5-3, F 
3-1, and F < 1), Lys (F > 10, F 10-5, F 5-3, F 3-1, and 
F < 1), Phe and Tyr (F 10-5, F 3-1, and F < 1), Thr (F 
> 10, F 10-5, F 5-3, F 3-1, and F < 1), and Val (F > 
10, F 10-5, F 5-3, F 3-1, and F < 1). Indeed, the red 
lionfish F < 1 fraction had a higher overall EAA 
content than the F < 1 fraction from black tuna 
muscle by-products hydrolysed with Alcalase® 
(TPH, Table 1) (Saidi et al., 2014a). This high EAA 
content provides high nutritional value to red 
lionfish.

Electrophoretic profile 

 Fraction F > 10 contained a protein with an 
estimated molecular weight of 36.12 kDa, confirm-
ing that membrane fractionation was effective. Poly-
peptides were not detected in F 3-1 and F < 1, proba-
bly because their small size prevented their detection 
in the gel (Figure 4). However, free amino acids have 
been reported in fractions of < 3 kDa with molecular 
weight components smaller than the cut-off point for 
3-5 kDa and > 5 kDa membranes (Farvin et al., 
2014). Analysis of molecular weight distribution, 
expressed as percentages of the area under the curve 
in fractions from cod, found that 83.8% in the 3-5 
kDa fraction corresponded to molecules < 3 kDa. In 
a subsequent study (Farvin et al., 2016), LC-MS/MS 
was used to identify amino acid sequences, mostly 
di-, tri, and tetra-peptides in the 3-5 kDa fraction. The 
lack of polypeptides in the present F 3-1 and F < 1 
fractions may therefore be due to membrane fouling 
or the attraction of small molecules to larger oligo-
peptides with which they associate.

 In the F > 10 and F 10-5 fractions, polypep-
tides were identified with estimated molecular 
weights ranging from 6.512 to 3.496 kDa (based on 
standard) (Figure 4, marked with the letter A). In 
addition, a band with an estimated molecular weight 
of 2.172 kDa was observed in the F 5-3 fraction. This 
coincides with the presence of polypeptides smaller 
than 3.5 kDa in hydrolysates of tilapia (Oreochromis 
niloticus) by-products produced with Alcalase® 
(Roslan et al., 2014). Higher DH resulted in medium 
and small peptides.
 To our knowledge, this is the first attempt at 
evaluating the biological activity of peptide fractions 
from red lionfish hydrolysates. It is a starting point 
for future studies characterising amino acids 
sequences with more sensitive techniques such as 
LC-MS.
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Figure 3. Angiotensin-converting enzyme inhibition (ACEI) of 
peptide fractions (equivalent to 500 µg protein) derived from red 
lionfish muscle subjected to enzymatic hydrolysis with Alcalase® 
for 30 min. Different letters above the bars indicate statistically 
significant difference (p < 0.05).

Figure 4. Electrophoretic profile of peptide fractions derived from 
red lionfish muscle subjected to enzymatic hydrolysis with 
Alcalase® for 30 min.



Conclusion

 Red lionfish muscle hydrolysates were 
produced using the commercial enzyme Alcalase®. 
The resulting peptide fractions exhibited high 
contents of amino acids such as Ile, Leu, Lys, Met, 
Thr, and Val. The proportions of these amino acids 
are probably linked to the observed inhibition of 
β-carotene discoloration and high copper-chelating 
activity. The F 5-3 and F < 1 kDa peptide fractions 
had the highest ACE inhibitory activity, probably 
due to the presence of hydrophobic and aromatic 
amino acids. These peptide fractions may have 
potential applications due to their high essential 
amino acids content, which would provide them 
nutritional value. Further research is needed on these 
peptide fractions to completely characterise their 
amino acids sequence, and in vivo studies are needed 
to assess their potential applications and add value to 
the meat of this invasive fish species.
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